Role of enteric glia in intestinal physiology: effects of the gliotoxin fluorocitrate on motor and secretory function.

نویسندگان

  • Yasmin Nasser
  • Ester Fernandez
  • Catherine M Keenan
  • Winnie Ho
  • Lorraine D Oland
  • Lee Anne Tibbles
  • Michael Schemann
  • Wallace K MacNaughton
  • Anne Rühl
  • Keith A Sharkey
چکیده

The role of enteric glia in gastrointestinal physiology remains largely unexplored. We examined the actions of the gliotoxin fluorocitrate (FC) on intestinal motility, secretion, and inflammation after assessing its efficacy and specificity in vitro. FC (100 microM) caused a significant decrease in the phosphorylation of the glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diaz-4-yl)amino]-2-deoxyglucose in enteric glial cultures and a reduction in glial uptake of the fluorescent dipeptide Ala-Lys-7-amino-4-methylcoumarin-3-acetic acid in both the ileum and colon. Dipeptide uptake by resident murine macrophages or guinea pig myenteric neurons was unaffected by FC. Incubation of isolated guinea pig ileal segments with FC caused a specific and significant increase in glial expression of the phosphorylated form of ERK-1/2. Disruption of enteric glial function with FC in mice reduced small intestinal motility in vitro, including a significant decrease in basal tone and the amplitude of contractility in response to electrical field stimulation. Mice treated with 10 or 20 micromol/kg FC twice daily for 7 days demonstrated a concentration-dependent decrease in small intestinal transit. In contrast, no changes in colonic transit or ion transport in vitro were observed. There were no changes in glial or neuronal morphology, any signs of inflammation in the FC-treated mice, or any change in the number of myenteric nitric oxide synthase-expressing neurons. We conclude that FC treatment causes enteric glial dysfunction, without causing intestinal inflammation. Our data suggest that enteric glia are involved in the modulation of enteric neural circuits underlying the regulation of intestinal motility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells.

The enteric nervous system may have an important role in modulating gastrointestinal barrier response to disease through activation of enteric glia cells. In vitro studies have shown that enteric glia activation improves intestinal epithelial barrier function by altering the expression of tight junction proteins. We hypothesized that severe injury would increase expression of glial fibrillary a...

متن کامل

The effect of depressing glial function in rat brain in situ on ion homeostasis, synaptic transmission, and neuron survival.

The supporting role of glial cells in maintaining neurons and in ion homeostasis has been studied in situ by perfusing the gliotoxin fluorocitrate (FC) through a microdialysis fiber in the CA1 area of urethane-anesthetized rats. Extracellular direct current potential, extracellular potassium concentration ([K+]o) and amino acid levels, extracellular pH (pHo), and evoked field activity were stud...

متن کامل

Effects of the gliotoxin fluorocitrate on spreading depression and glial membrane potential in rat brain in situ.

DC extracellular potential shifts (deltaVo) associated with spreading depression (SD) reflect massive cell depolarization, but their cellular generators remain obscure. We have recently reported that the glial specific metabolic poison fluorocitrate (FC) delivered by microdialysis in situ caused a rapid impairment of glial function followed some hours later by loss of neuronal electrogenic acti...

متن کامل

Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of proEGF.

Wound healing of the gastrointestinal mucosa is essential for the maintenance of gut homeostasis and integrity. Enteric glial cells play a major role in regulating intestinal barrier function, but their role in mucosal barrier repair remains unknown. The impact of conditional ablation of enteric glia on dextran sodium sulfate (DSS)-induced mucosal damage and on healing of diclofenac-induced muc...

متن کامل

Role of vasoactive intestinal peptide and inflammatory mediators in enteric neuronal plasticity.

Complex circuits involving both local intrinsic neurones (i.e. enteric nervous system; ENS) and extrinsic neurones achieve nervous control of digestive functions. The ENS is comprised of many functionally different types of neurons: sensory neurons, interneurons and secreto-motor neurons. Each neuronal population is required to manifest local reflex behavior and is central to the regulation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 291 5  شماره 

صفحات  -

تاریخ انتشار 2006